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Abstract

●

v

A major concern in the use of heavy ion beams

fusion systems is the vulnerability of the beam to

as igniters in pellet

the transverse flamenta-

tion instability. The undesirable consequence of this mode is the transverse

heating of the beam to the extent that convergence on the pellet becomes

impossible. This work considers the case of a beam injected into a gas filled

reactor vessel, where finite pulse length and propagation distance play an

important role in limiting growth. Two geometries are analyzed: a non-

converging case where the radius at injection is nearly equal to the desired

radius at the pellet, and a converging case in which the injection radius

is large and the

that a cold beam

plasma frequency

This product may

into many (=50)

pellet, however

if this product

1

beam is pre-focused to converge at the target. It is found

will be severely disrupted if the product of the magnetic

and the propagation distance is much larger than unity.

be lowered by dividing the energy of the original beam

individual beams arranged to converge simultaneously at the

this represents a significant engineering complication. Even

is large, growth may be limited to about six e-foldings

if enough transverse velocity spread is added

pulse propagates in pinched equilibrium. The

that the latter

disadvantage of

half of the

this mode is,

however, that much of the pulse is lost to thermal expansion.

Introduction

Among the critical issues confronting the use of heavy ion beams as

pellet igniters is whether such a beam can propagate through the reactor

vessel to finally achieve a spot size of the order of 1 mm on the pellet.

Assuming the beam can be directed to strike the target, this final spot



-L-

size will not be obtainable if the beam has been subjected to any of various

instabilities which transversely heat it at the expense of its longitudinal

energy. The most serious of these appears to be the filamentation insta- ●

bility, in which modes of transverse wave number k can grow with character-

4rm/c2k2, where rdenotes the conductivity of the background
b

istic times Tm =

plasma. The use of a low pressure (ng = 1012) vessel environment and/or many

(- 50), simultaneous, low current beams would allow each beam to be magnet-

ically stiff and hence stable over the entire distance of flight. This

approach, however, places constraints on the reactor system and suggests the

examination of unstable growth in the high pressure (ng = 1016) regime. This

report is a summary of the results of a more comprehensive treatment given

elsewherel’2 of filamentation growth in converging and non-converging beams

of heavy ions in a background plasma of finite conductivity.

The basic mechanism of the filamentation instability is

which is given small transverse mode structure will separate

that a beam

into small

beamlets as the result of the attraction of parallel currents. If the beam

is moving in a background plasma such that charge neutralization can occur,

each beamlet will continue to self-pinch until its magnetic pressure B2/8T

becomes equal to the transverse thermal Pressureyn (1/2 mvth2)* If we

define ~ to be the ratio of thermal pressure to pinch pressure for a filament

in the instant just after the perturbation, we conclude that T=l should

be required for successful propagation. For ~<1 the filament will pinch

at a rate,(n) proportional to the square root of the ratio of the magnetic

force per unit length to the mass per unit length. A maximum growth rate

occurs for a filament whose radius is less than or equal to the magnetic

skin depth of the pulse and takes the value~
max =~b= (4 ~q2n/Ymc2)l/2
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whereQb is just the magnetic plasma frequency divided by VC. If the beam

is to propagate a distance L, then the total number of e-foldings of growth

is 0= ~bL. In light of these observations, we can takeci and ~as two

dimensionless characterizations of the beam and its filamentary tendencies.

Non-Converging Case

In the previous treatment of the non-converging beaml the equilibrium

distribution function f. = noF(~) H(T) H(TP-T) and the equilibrium vector

potential A. are perturbed by the form

(fl, Al) ccexp [i(~.~ - QZ -WTI = exp [i(~.~) +gl, (1)

where z is the longitudinal variable measured from the reactor wall into the

chamber and T= t - z/pc is a convenient transformed time such that pcT is a

longitudinal distance into a pulse of duration Tp as measured from the head.

We have assumed~Ao = O and have let H(T) represent the step function. The

resulting dispersion relation is

‘@Tin= 1 + r(k,sl)

22

1

F(~)
where r(k,S2)=Qb, d~

($2- k.:/pc)2 ‘

(2)

(3)

giving a growth exponent of

g(~,T,Z) = is2z- (Tfim) (1 +r) (4)

Several velocity distributions have been studied, the most convenient

being the single pole approximation to the Maxwellian:
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where b(k) = kVth/ (@$~b~c) ● The dispersion relation becomes

()=1+~ -2
iLdTm +ib.

‘b

If T is held fixed and the growth factor g, given by Eq. 4, is maximized

with respect to z we obtain

9=max

(5)

(6)

(7)

It is interesting to note here that the mode number dependencies of Tm and

~ leave gmax independent of k at fixed T. Further, if we assume a parabolic

profile for the beam current density Jb and a conductivity independentof r

and arrange the thermal velocity so that the beam pinches half-way back from

the head (specifically we require that TI= 1 at T= Tp/2), then

9Max<& .!
– /j2Tm ~

If II= 1 we obtain marginally severe growth but have sacrificed the first

half of the pulse to rapid expansion.

Converging Beam

We consider next a geometry in which the pulse converges from a large

radius at z = O to the chosen target radius at z = L. We perturb away

from straight line converging particle orbits. The unperturbed system

(8)

●

b
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is characterized by ~Ao = O and distribution function f. which is of finite

extent and uniform in the tranverse plane, f. is normalized to density

nwatZ=o. The problem of characterizing f. is simplified by noting that

~= vJ1-z/L)+~ r (9)

is an integral of the unperturbed motion which displays the assumed convergence

at z = L; thus we consider f. = nw F (~). The density at arbitrary z is then

‘o(z)‘Jd2xfdd2’nJ(’)‘i%dd”F‘1)‘&(’o)
The mean squared thermal velocity is then

Iv -<v>f= 1‘:h(z) = ~ _
\

dz~ V2F(~) =
vth(”)

~ (1- f)z ‘
(11)

where v~h (0) is the initial mean squared thermal velocity assumed independent

of ~

To parallel previous work we have

We proceed in the conventional way by formally solving Eq. (12) for fl:

(12)

(13)
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-,

where flo is the initial disturbance carried along the unperturbed orbits.

Recall that both ~and~were constants of the motion; hence if we introduce

u(z) = (l- f)-l we can write Eq. (9) as

~=_ v/u(z)+f~= constant

Then any point along an unperturbed orbit can be described by

~(z’) U(z’) =~ (z) u(z) +*y [u(z’) - u(z)]

We then select a perturbation with ~ ~

(Al, Jb, ) ~exp(i~”~u) = exp [“

ependence of the form

1

to obtain the perturbed

constants~ and~b :
1

distribution function with proportionality

(15)

(16)

(17)
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The perturbed current is then

‘bl - ‘b10 = ‘Pc 1
dzy (fl - flO)

We may reverse the order of integration and integrate by

where G’ = (4rq2nw/YMc2) L’ = QW2L2 ,

~ = (u-u’):

ik.VL
+ 1-+(u’-u) (19)

parts on~to get

(20)

If we now apply the assumed form of Eq. (17) and the definitions above to

Eq. (13) we obtain for the perturbed field

2uA+T m&A=##bl “ (21)
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Finally if we define an amplitude proportional to the perturbed density,

and a source S as

then Eqs. (20) and (21) can be written as

1u
x= S+02 du’ A’ (U-U’) : ,

1

2 aA=xuA+T—
m 8T

Cold Converging Beam

We first solve Eqs. (22) and (23) for the cold limit, where

(22)

(23)

F(!) = b(~) gives;(~) = 1. Then differentiation of Eq. ‘(22) twice gives

2
~X=a2A “
8U

(24)

If we further let Tm+O either because u-O or k--m then Eq. (23) becomes

U2A = X .

The solution is X+= U1 where

(25)

(26)
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The cold converging beam thus displays algebraic growth with distance rather

than the exponential growth found for the straight beam. The magnitudes of

growth, however, are quite similar over the distances of interest.

When Tm is finite growth is reduced. This can be seen by application of

the Laplace transform in the variable :

1

a
i =- X d. e-pT

o

and similarly for A. The system (22) and (23) combine to give

82 .2 ~
~~= ●

u + pT
m

The WKB solutions, good for large~, are

i+ = exp
-{

u

[

U + (U 2+ pTm) 1/2 ~Q
I

-1-a

,? 1/2 =

1

.(28)
1 (u + pTm) 1 + (1 + pTm)l’2

We take the initial conditions to be

X(u=l) =

o T< O

[
1 T>()

and ~ X(u=l) = o .

We can approximate the inversion integral

~ << 1 with a saddle analysis to obtain
‘m

2. . ~ >> 1 and‘n ‘he llmlt ‘f Tm

X a exp [g] where



-1o-

[%]*
9=~[l+ln (~)]+ czlnu(~)l/2

The gross consequences of a non-constant background

obtained by using a model in which conductivity rises as

of beam radius

(29)

conductivity may be

the inverse square

This is viewed as an attempt

to beam intensity. Eq. (27)

82
~

with WKB solutions

x+ =

becomes

.2 ;:=
Uz(l+pTw) ‘

[

czlnu
exp ~

(1 + pTm) 1/2

l..

A saddle analysis of inversion integral yields xcexp (g) where

which is exactly the cold non-conver9in9 result with~bz - ~~n u=

Warm Converging Beam

(30)‘m = Tm(u=l) U2 = Tw U2 .

to model generation of conductivity proportional

(31)

(32)

(33)

Solution of Eqs. (22) and (23) for arbitrary choices of F(!) is in general

.

e

.,

quite tedious, but we may obtain the overall features by the use of a single

pole form of F(!). This procedure yields
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A

‘L

where K is a constant proport”

that an arbitrary F(y) can be

It

for

.

*

= exp [ - K(u-u’)]

onal to the thermal velocity. It may

approximated in single pole form with

(34)

be shown

(35)

s this fact that lends wide applicabi ity to this somewhat unphysical form,

now Eq. (22) can be written as

n f-u
X= S+-CYLJ du’A’(u-u’)e -K(u-u’)

.
1

(36)

When the factor exp [K(u-1)] is absorbed into X, S, and A,the equation returns

to its cold form (already solved.) We can write the solutions

x ‘Xco,d (?
-K(u-1) .

For a Maxwellian profile K =CY6 .

In the limit of low conductivity (TM--O), we use the results of

Eq. (26) with ~large to get:

x=uU-@6(u”l)

(37)

(38)

Note that, in contrast to the straight beam case in this limit, the growth

here reaches a maximum at u =+ . This feature appears consistently

in the warm beam analysis and is due to transverse phase mixing of beam
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particles. As a result we should expect total growth of a warm beam to

be somewhat less than the growth of the corresponding cold beam case. For

instance, if we consider the case of Tm finite we can proceed as before

with the exception that, following the saddle point evaluation, we maximize

the warm growth rate

9warm
= gcold - (26 (U-1) (39)

with respect to u, k, and T. We find that growth is a maximum for k=o, u=~,

T=TP but with the product uk finite. Defining the quantity Q = CY~/24, we

find

9 =~2Q
max

1
1

11- TZQ2forQ>> 1

6=—
n 0

Q - (Q2+l)1/2 + In (Q2+l)~/2 + 1)
(40)

.

“12Q[ln(~) -1] forQ << 1 .
Q

Observe that growth is less than the cold beam value of6/~ for all

values of a andq.

Finally, for Tm = U2 we proceed as before, but find that gmax can be written ‘

only as an implicit function of Q. Maximum growth Still occurs at T= Tp

however, and is found to be everywhere less than that for the converging, con-
.,

stant conductivity case treated above. In particular, forQ << 1 we can

approximate

[

-1
9 ~2Q in (Q-l) 1- 2-1 - ln ln
max ‘n ln(Q ) ‘Q)]in (Q-l) ●

(41)
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It is obvious that the last two expressions are similar, at least in

leading approximation, hence we adopt the general form

9max =~f (cYq/24) (42)

where the specific form of f depends on the precise situation. With the above

results of Eqs. (40) and (41) we can characterize f in two limits

f(a?l--m)=]

f(aq-+))=~1 -J+C.id’% )

The constant C depends on the specific model but can be

2.2. Clearly, a non-converging beam must have 11=1 in

in equilibrium, giving only a few e-folds of growth dur-

(43)

taken as approximately

order to propagate

ng trans”t. For a

converging beam, however, ~ increases proportional toU/q2 where q is the

effective ion charge. For the beam to pinch at the pellet, q must be

unity there. At the wall then, ~must be much smaller and bounded by

= (U/q2)m~n/(m/q2 )pellet
‘lw~’lpinch (44)

where the minimum is taken over the converging profile. There is considerable

growth, then, early in transit and it can be approximated when the conductivity

ratio is high from Eq. (43):

(45)
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Values of a less than unity could not yield large effects under extreme

assumptions on conductivity development. Conversely it seems unlikely

that CY>5 could be tolerated even ifa/q2 varied by only a factor of 10.

One suspects that ~= 3 represents an effective bound for the converging

beam. From our definition of &=!i2bL we should expect, then, a maximum

transported energy of

w

where A and Z are the atomic

particles, R. is the rms radius of the beam at Z=O and L is the chamber

s(49MJ)($y P3(l~)(~)z * (46)

mass number and stripped charge for the beam

radius. The beam is assumed to have a parabolic profile with edge a. = @R.

and central density n = 21b/qpcma2. If we take Tp = 10 ns, A/Z = 4,

Ro/L = 10-2, and p= 0.3 we find

w~o.021 MJ .

)

A total of 50 beams would be required to put 1 MJ on the target placing

formidable complications in the way of reactor system design.

)

I
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